PIANO URBANISTICO ATTUATIVO

IN VARIANTE AL P.O.C. APPROV. C.C N.77 DEL 23-12-2013

ACCORDO DI PIANIFICAZIONE CON PRIVATI
AI SENSI DELL'ART. 18 L.R. 24 MARZO 2000, N.20

AMBITO ANS-C 9 SAN PIETRO IN CASALE (BO) VIA STANGOLINI

Committenti:	Sim italia s.r.l. Via Nazzario Sauro, 29 40121 Bologna In forza dell'art. 18 L.R. 24 Marzo 2000, n. 20 sottoscritto in data 22/05/2014 Repertorio n. 11.
0392	Ing. Davide Dall'Aglio-Arch. Gianni Mazzoni C.F. DLLDVD66P15A944G - MZZGNN70M05A944F e_mail: dallaglio@studiosap.it - studiogamberinimazzoni@gmail.com
Z:\Studio\SAPtecnica\0392\0392_2015- 05_PUA AREALE 9\0392_2015-05_PUA RELAZIONI\0392-RE03 Relazione Geologica.docx	PEC: davide.dallaglio@ingpec.eu - gianni.mazzoni@archiworldpec.it

· 	4				
ent	3				
la m	2				
orr	1				
199i	0	Luglio 2015	Preliminare		Emissione
4	Ν	Data	Fase	Redatto	Descrizione

RELAZIONE GEOLOGICO-GEOTECNICA-SISMICA

RELAZIONE GEOLOGICO-GEOTECNICA-SISMICA

RELAZIONE GEOLOGICO-GEOTECNICA-SISMICA

Redatto da:

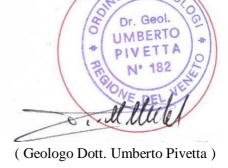
SAPtecnica srl. Società di Ingegneria Via Dante,11 - 40016 - San Giorgio di Piano (BO) Tel. 051893797 - fax. 0516631032 - e_mail info@studiosap.it

PAGINA LASCIATA INTENZIONALMENTE BIANCA

REGIONE EMILIA ROMAGNA

COMUNE DI SAN PIETRO IN CASALE

PROVINCIA DI BOLOGNA


PIANO URBANISTICO ATTUATIVO tra Via Genova e Via Stangolini

RELAZIONE GEOLOGICA - GEOTECNICA

D. del M. delle Infrastrutture 14 gennaio 2008 "Approvazione delle nuove norme tecniche per le costruzioni".

Data: 7 Agosto 2015

Il relatore

SOMMARIO

DATI DELL'INTERVENTO
RELAZIONE GEOLOGICA
1) INQUADRAMENTO GEOLOGICO DELL'AREA4
2) INDAGINE E PARAMETRI GEOTECNICI
3) PARAMETRI DI PERICOLOSITA' SISMICA DEL SITO14
4) INDAGINE SISMICA19
RELAZIONE GEOTECNICA
5) VERIFICA AGLI STATI LIMITE ULTIMI30
6) CALCOLO DELLA CAPACITA' PORTANTE32

DATI DELL'INTERVENTO

Committente:

Ubicazione dell'area di intervento: Via Genova-Via Stangolini – San Pietro in Casale (BO)

Veduta aerea dell'area di interesse

PREMESSA

Nei primi di Agosto 2015 stata eseguita un'indagine geologica e geotecnica sui terreni interessati dal Piano Urbanistico Attuativo nell'area compresa tra Via Genova e Via Stangolini in Comune di San Pietro in Casale (MO).

Ai fini della parametrizzazione dei terreni di interesse la campagna di indagine si è svolta il 5 Agosto 2015 con l'esecuzione di n. 4 prove penetrometriche statiche ubicate in corrispondenza dell'ingombro delle strutture di progetto.

Dal punto di vista generale, la relazione **GEOLOGICA e GEOTECNICA** si propone in particolare di fornire ai Progettisti i parametri tecnici necessari per la corretta scelta e dimensionamento delle opere di fondazione e consolidamento.

Di seguito si riporta una sintesi delle indagini eseguite:

Data di esecuzione delle indagini	18 gennaio 2013
Tipologia di indagine	Prova penetrometrica statica
Profondità indagata max	10,0 m
Riferimenti normativi	D.M. 14.01.2008 Norme tecniche per la Costruzioni
	Circolare n. 617 del 2.2.2009 del C.S. LL.PP.
	OPCM 3274 del 20.3.2003
	EC7 – EC8

Si specifica che la presente relazione geotecnica è stata uniformata ai contenuti del **D.M. 14 gennaio 2008**: "Nuove norme tecniche per le costruzioni".

RELAZIONE GEOLOGICA

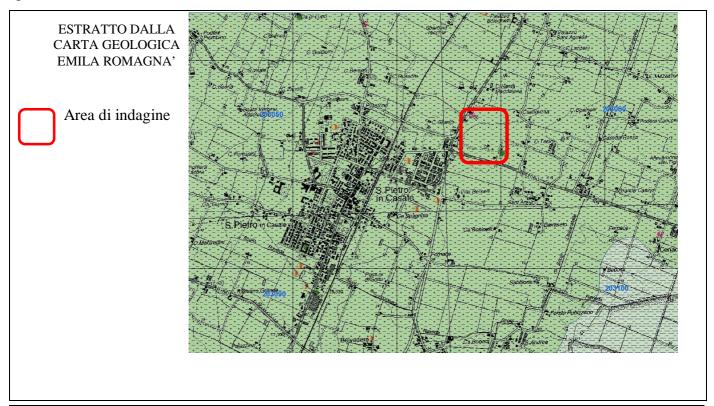
1) INQUADRAMENTO GEOLOGICO DELL'AREA

1.1 Inquadramento cartografico

La zona di interesse si trova in territorio comunale di San Pietro in Casale (BO)

Estratto da tavoletta IGM Scala 1:25000 Caratteristiche topografiche: area di pianura	Comaini C. Sourie C.
area di intervento	Majone Til Berselli Germasylli Germasyl
Estratto da C.T.R. n° 203252	anca C. Guidioni Ta C. C. Guidioni C. G. Guidioni C.
Scala 1:5000	C. Zanomi C. Corrasini C. Dessenio C. C. In Maddalena Maddalena
Quota altimetrica media: 15 m slm	e C. Grando K. 20 C. Tesirij, 3 ii Casettu Rossa
area di intervento	
	S. Pietro villa Berselli Sant Arra villa Berselli Sant Arra villa Berselli Ca Bosinelli Ca Bosin
	Fornace 13 Sabbione Sabbione Fondo Rubizzano

1.2 Inquadramento geologico e geomorfologico

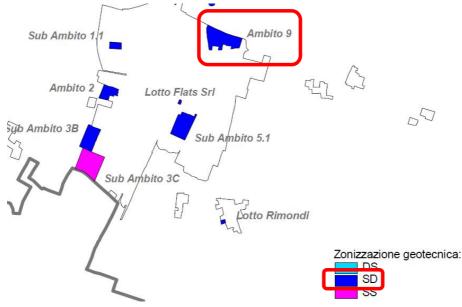

L'area di interesse è caratterizzata dal punto di vista geologico dalla presenza di terreni di origine alluvionale che costituiscono il substrato della pianura emiliana.

La pianura, lasciata libera dal mare nel Pleistocene superiore, e stata colmata da depositi continentali che hanno ricoperto i depositi marini prevalentemente pliocenici responsabili del mascheramento delle strutture profonde che sono note solo grazie alle tecniche di ricerca di idrocarburi.

La zona, dal punto di vista geo-strutturale, si colloca in corrispondenza di una geosinclinale subsidente, colmata da materiali alluvionali abbandonati dai corsi d'acqua di provenienza appenninica. I sedimenti continentali accumulati nel corso del Quaternario, raggiungono spessori dell'ordine di 150-200 m (Carta sismotettonica della Regione Emilia-Romagna).

I terreni che caratterizzano il primo sottosuolo sono rappresentati da sedimenti di origine fluviopalustre depositati in massima parte del Fiume Reno e dal Canale Navile.

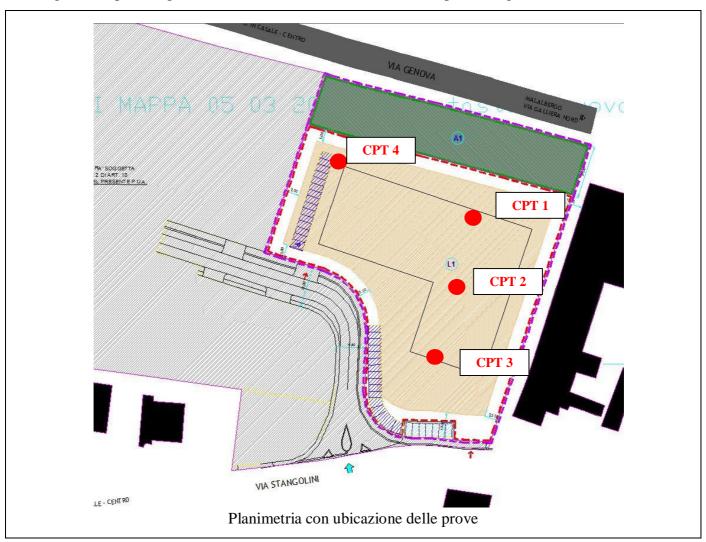
Si tratta di depositi di origine continentale a granulometria solitamente medio-fine, con prevalenza di litologie generalmente limose e sabbiose, caratterizzati da uno spessore via via decrescente procedendo verso sud, e di depositi limosi e argillosi, con presenza di materiali organici parzialmente decomposti, tipici di un'area interfluviale e di palude;sono presenti intercalazioni di livelli e lenti sabbiose discontinue. Da quel che si evince dalla lettura della Carta Geologica a cura della Regione Emila Romagna, l'area fa parte del sistema limoso- sabbioso di Piana Alluvionale, inserita nel subsistema di RavennaAES8



Ambienti deposiz. e litologie (10K)	zoom data di ultima modifica	Poligono non aggiornato rispetto al rilievo originale
Limo Sabbioso - Piana alluvionale	sigla	AES8
Coperture quaternarie (10K)	legenda	AES8 - Subsintema di Ravenna
AES8 - Subsintema di Ravenna	nome	Subsintema di Ravenna
	tessitura	Limo Sabbioso
	sigla tessitura	LS
	ambiente	Piana alluvionale
	deposito	Piana alluvionale
	legenda tessitura	Limo Sabbioso - Piana alluvionale

Nel POC Piano Operativo comunale la zona di interesse è inserita nell'Ambito 9 per il quale la caratterizzazione geotecnica preliminare individua le seguenti caratteristiche:

Zonizzazione geotecnica \rightarrow SD \equiv zone caratterizzate da terreni di qualità scadente (rp <1.000 kPa) nel primo intervallo (fino a - 5 m dal p.c.), e da terreni di qualità da normale (1.000 < rp < 1.500 kPa) a discreta (> 1.500 kPa) nel secondo strato. Sono zone edificabili con normali tecniche costruttive, per insediamenti di modesto impegno; le caratteristiche meccaniche dei terreni richiedono comunque cautela ed analisi geognostiche dettagliate. Per edifici di un certo impegno (pressioni di esercizio > 12 t/ml) possono rivelarsi necessarie fondazioni che trasferiscano i carichi statici al secondo intervallo di qualità migliore. I comparti interessati da questa zona di edificabilità possono presentare limitazioni, all'impiego di fondazioni superficiali, legate all'entità della pressione di esercizio e dei cedimenti assoluti e differenziali.


2) INDAGINE E PARAMETRI GEOTECNICI

2.1 Indagini geognostiche

Per la determinazione della stratigrafia che costituisce il sottosuolo dell'area oggetto di intervento e per la determinazione dei parametri geotecnici sono state eseguite n. 4 prove penetrometriche statiche, con penetrometro da 20t.

Di seguito si riporta la planimetria con indicata l'ubicazione delle prove eseguite.

Di seguito si riporta la planimetria con indicata l'ubicazione delle prove eseguite.

2.2 Stratigrafia del terreno indagato e modello geotecnico (D.M. 14.01.2008)

L'indagine ha evidenziato una alternanza di limi argillosi e limi sabbiosi.

Facendo riferimento alle Prove eseguite, ed in particolare dalla Prova CPT 3, presa come di riferimento per la valutazione della capacità portante dei terreni, è stato possibile individuare i seguenti principali orizzonti:

CPT 3

Profondità (m)	Litologia	Orizzonte
0,00-2,80	Limo argilloso	A
2,80 – 3,60	Limo sabbioso	В
3,60 - 4,60	Limo argilloso	
4,60 - 8,80	Sabbia limosa	
8,80 – 10,00	Limo argilloso	С

Il progetto prevede la realizzazione di un capannone che si svilupperà interamente fuori terra.

La determinazione dei parametri geotecnici che caratterizzano questi materiali è stata effettuata sulla base delle prove penetrometriche statiche eseguite.

Con il passaggio dal DM 11 marzo 1988 alle Norme Tecniche per le Costruzioni si sostituisce il concetto deterministico con quello probabilistico. In particolare la vecchia normativa prevedeva l'utilizzo dei fattori di sicurezza intesi come riduzione del valore ultimo (da Qult a Qamm) mentre le NTC adottano un'analisi probabilistica, più precisamente semiprobabilistica, che include l'utilizzo di FS parziali, applicati a valori cautelativi dei parametri di interesse.

Il valore di progetto, Xd (Cud e \emptyset d nei vari stati limite) sarà quello da utilizzare nelle verifiche e sarà ricavato a partire da un valore caratteristico (Xk: calcolati con medie statistiche e con l'utilizzo di variabili aleatorie) al quale verrà applicato un fattore riduttivo γ M (FS parziale) tabellato nelle Norme Tecniche.

$$x_k = \overline{x} + t_{0.05}(n-1) \left(\frac{s}{\sqrt{n-1}} \right)$$

Considerati i carichi di progetto e la realizzazione di fondazioni superficiali, i parametri di resistenza penetrometrica medi caratteristici derivati dall'indagine in sito sono di seguito illustrati, limitatamente agli orizzonti stratigrafici precedentemente individuati. Per quanto riguarda un dato parametro il valore

caratteristico corrisponde ad un valore al di sotto del quale ci si può attendere che si collochi non più del 5% dei valori ottenibili da una serie teoricamente illimitata di prove (5° percentile). Si riportano di seguito i valori dei parametri geotecnici - geomeccanici assunti per l'intervento in oggetto

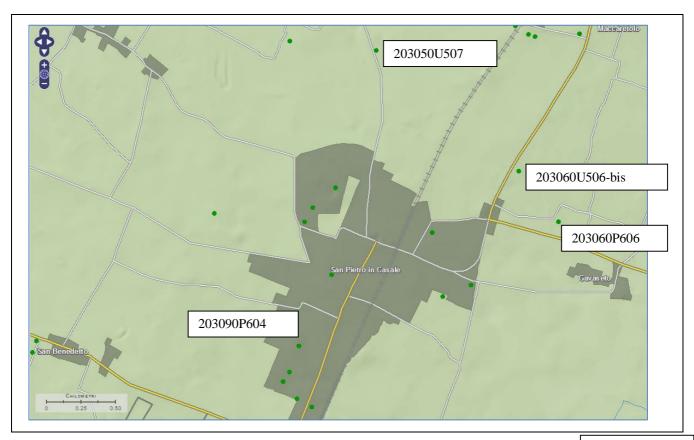
La vecchia normativa prevedeva l'utilizzo dei fattori di sicurezza intesi come riduzione del valore ultimo (da Qult a Qamm) mentre le NTC adottano un'analisi probabilistica, più precisamente semiprobabilistica, che include l'utilizzo di FS parziali, applicati a valori cautelativi dei parametri di interesse.

Parametro	Tangente angolo di	Coesione	Coesione non	Peso Unità volume in	
	resistenza al taglio	efficace	drenata	fondazione	
Coefficienti	1,25	1,25	1,4	1	
parziali	1,23	1,23	1,4	1	

Da Tab. 6.2.II Coefficienti parziali dei parametri geotecnici del terreno (D.M. 14/01/2008).

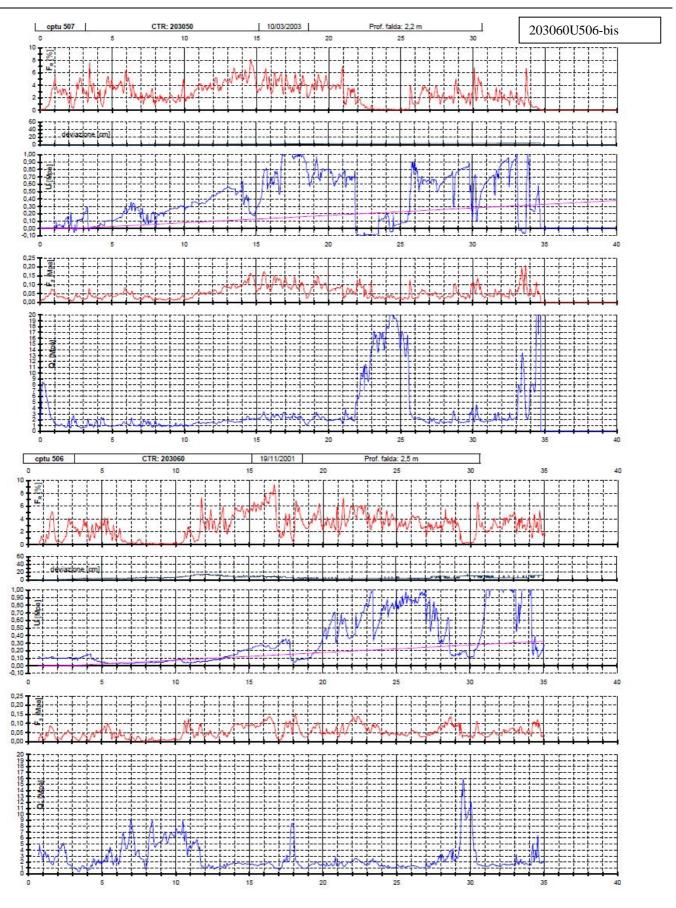
Di seguito verranno riportati i parametri geotecnici considerando *grandi volumi di rottura* (resistenze compensate) in quanto le misure di resistenza dei terreni sono state effettuate all'interno del volume significativo come descritto nel *NTU* per le costruzioni.

I parametri sono stati desunti in base all'ampia casistica che consente la correlazione tra i valori di Resistenza all'avanzamento di punta e i parametri caratteristici.


ORIZZONTE	Spessore	Peso unità di	Peso unità di	Angolo di	Coesione	Coesione	Modulo	Modulo
	strato	volume	volume saturo	attrito	$[kN/m^2]$	non drenata	Elastico	Edometrico
	[m]	$[kN/m^3]$	$[kN/m^3]$	[°]		$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$
A	2,8	18,16	18,95	0,0	0,0	44,0	0,0	4270,21
В	0,8	17,65	20,59	31,0	0,0	0,0	0,0	7722,74
С	1,0	18,01	18,79	0,0	0,0	40,0	0,0	4138,75
D	4,2	17,65	20,59	33,0	0,0	0,0	0,0	11011,89
E	1,2	17,64	18,42	0,0	0,0	35,0	0,0	3818,6

2.3 Rilevamento della falda

Durante l'esecuzione delle prove si è rilevata presenza di falda alla profondità di 2,0 m dal piano campagna. E' da sottolineare che l'indagine é stata eseguita in periodo relativamente secco (primi di Agosto 2015): in area limitrofa, precedenti indagini avevano riscontrata la falda a profondità del'ordine di 1,5 m

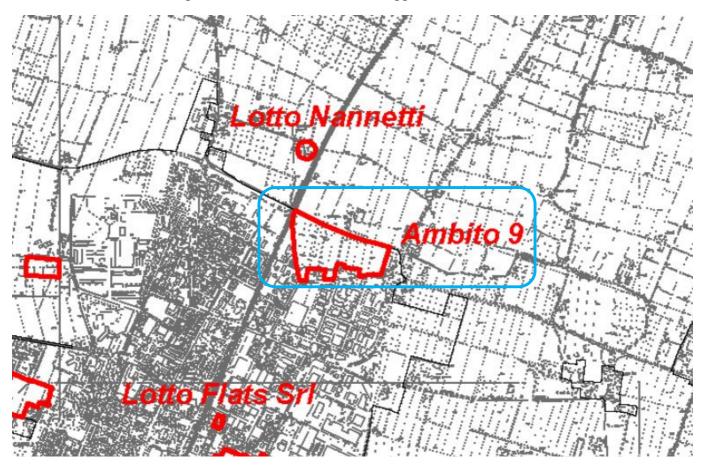


Ad integrazione e supporto delle indagini dirette eseguite si allegano le stratigrafie di indagii eseguite su terreni limitrofi a quelli di indagine e estratte dal Geoportale della Regione Emilia Romagna. Si tratta di Prove Penetrometriche Statiche CPTU e stratigrafie di perforazioni profonde per pozzi con profondità di indagine dai 30 m ai 160 m. Di seguito si riporta la mappa con l'ubicazione delle indagini esaminate e i relativi risultati.

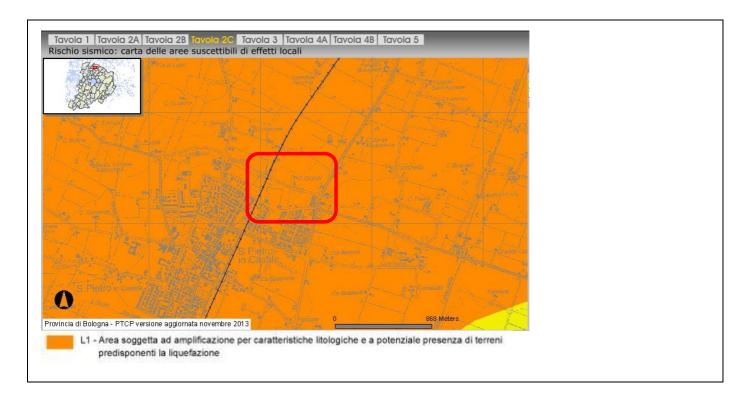
203050U507

Ditta HPDTDANTANG - 1 C		
residente a S. Pietro in Casale	rifici Mazionali- Genova-Stabilimento in via Altedo 4133/B (Bologna)	d1
	in Comune di S.Pietro in Casale	
Frazione WH Localita	a via delle rose 6-10-12 Mapp. No 348 /	. 67
Data di ultimazione della perforazio Ditta perforatrice: Spattoli & Par	ne: 12 Novembre 1977	
CARATTERISTICHE DEL POZZO	STRATIGRAPIA DEL TERREMO	
*evanpozzo (si o no) NO	Indicare la natura dei terreni e le	203090P60
*diametro interno tubi na. 154	PAIDE ACQUIFERS attraversati	203090P60
tube zincate SS mannesmann		
*profondità at. 148,50	-da mt. 0 a mt. 6 terreno vegetale	
EQUIPAGGIAMENTO	-ds mt. 6 s nt. 24 argilla mista a sabbia	
*tipo della posparsonnersa		
KSB t1po UQD 152II 6R 33/2	-da mt. 24 a mt. 30	1
*potenza Cv 5	sabbia fine e limo	
*prevalenza at. 92	-de mt. 30 s mt. 66	
*portata lt/sec3_	argilla	
-5011111	-ds nt. 55 a nt. 72 sabbia fine e limo	
Livello statico at. 10,90	-de nt. 72 e nt. 102	
Portata pozzoilt/sec. 3	argilla scura pastica	
Superficie irrigata;	-da nt.102 a mt146	•
ha. 0 are 50 cs. 00	argilla plastica mista	
Consumo giornaliero (24 ore);		falda
metri cubi 10 nel periodo estiv	o sabbia medio grossa 🕏	aptata
o " " inver	Male Socializzazione del pozzo	
Le Ditte sottoscritte efferme, sotto	Long. Let. Ha.	
la propria responsabilità, che la pre sente dichiarazione è completa e ve- ritiera.	Quota piano cempegna:n.s.l.m.	
Data_25.11.77	ANNOTAZIONI:	
Fires		
· . /		
- Little		

ratica Nº	COMUNE-Istat	06 2030	60P606
PASSARINI MARINO			
residente a S. PIETRO IN CASALE in	H. MORGOBBO, 458		
	In Comune di S. PLETRO IN CASALE		
Frazione GAVASETO Località C	ASTIGLIA Mapp. Nº 69	Fg. 57	
pata di uttimazione della perforaziones			
Oltta perforatrice: SPETTOLI e P			
Ditta perforatrice: 3/E//02/ E P	akisiai i		
CARATTERISTICHE DEL POZZO	STRATIGRAFIA DEL TERRESO	\$	
*evanpozzo (si o no) <u>NO</u>	Indicare la natura dei terreni e le	Palde	
odiametro interno tubi mm. 104	PALDE ACQUIPERE attraversati	# 8	
	-ds mt. 0 s mt. 2		
*profondità mt. 31	TERRENO VEGETALE	22	
EQUIPAGGIAMENTO	-ds mt. 2 s mt. 3/		
A STATE OF THE STA	HR614LA		
*tipo della pompa <u>ELETTROPOHPA</u>	-ds nt. 31 s nt. 35		
	SABBIA GROSSA		
*potenza Cv 1,5	-ds nt. 35 s nt. 43		
*prevalenza mt. 30	ARGILLA		
*portate lt/sec. 2	-ds nt. 63 s nt. 65		
	SABBIA HEDIA		
Livello statico at. 12,10	-de nt. 65 e nt. 95		
Portets pozzoilt/sec. 4	ARGILLA		
Superficie (rrigata:	-do nt. 35 o nt. 31	1	
ha. 2 are 0 ca. 0	SABBIA MEDIO-FINE		
Consumo giornaliero (24 are):	-de mte mt		
metri cubi <u>173</u>			
	S Localizzazione del pozzo		
Le Ditte sottoscritte efferme, sotto	Long. Lat. Ha.		
la propria responsabilità,che la pre= sente dichiarazione è completa e ve= ritiera.	Quota piano campagna:n.s.l.R.		
Data 02.08. 1988	ANNOTAZIONI: APPARATO FILTRANT	E DA	
11ras Marino Passavini	HT. 85 # HT. SI CON TUBER 210 HE	E	
W=	FILTRO & MM 73 ESTRAIBILE		
	LICINO W DO TO ESIKOIOILE		


I dati litologici estrapolati dall'analisi delle indagini di repertorio allegate confermano la presenza di terreni fini a granulometria prevalentemente sabbiosa e limoso sabbiosa fino a grande profondità.

3) PARAMETRI DI PERICOLOSITA' DEL SITO

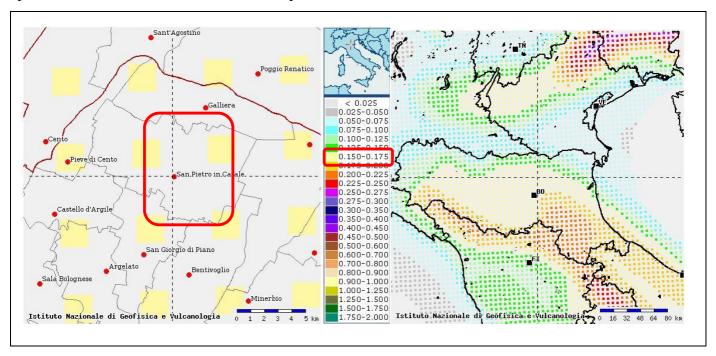

Secondo quanto riportato nel POC del Comune di San Pietro in Casale per gli ambiti di lottizzazione l'area di interesse si localizza all'interno dell'Ambito 9 per cui sono previste le seguenti caratteristiche di pericolosità e Microzonazione sismica semplificata (DAL n. 112/2007):

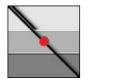
Aree suscettibili di effetti locali (Tav. 1a Variante PSC) \rightarrow Area II \equiv possibilità di liquefazione con cedimenti, tessiture e spessore da controllare. Corrispondono alle situazioni in cui risultano segnalate sabbie pulite e/o sabbie con abbondante matrice fine nei primi 15 metri di sottosuolo, con spessori generalmente compresi tra 1 \div 4 metri. Si tratta di sedimenti in cui è possibile che avvenga liquefazione, sotto impulsi ciclici dotati di magnitudo \ge 5,5 (richiede analisi approfondite di terzo livello). Queste aree risultano equivalenti dal punto di vista normativo alle aree "L2" definite dal PTCP (\S art.6.14 delle NTA). *Microzonazione sismica (Tav. 2a Variante PSC)* \rightarrow Zona II - 3 \equiv contesto "Pianura 2";amplificazione FA(Pga) =1,5, FA SI (0,1s \div 0,5s) =1,8, FA SI (0,5s \div 1,0s) =2,5; liquefazione: possibilità di liquefazione con cedimenti, tessiture e spessori da controllare (richiesti approfondimenti di terzo livello).

Secondo quanto riportato nella Carta del Rischio Sismico: carta della aree suscettibili di effetti locali del Piano Territoriale Provinciale della Provincia di Bologna, l'area di interesse risulta classificata come area soggetta ad amplificazione per caratteristiche litologiche e a potenziale presenza di terreni predisponenti la liquefazione.

Secondo la classificazione di cui al D.M. 14/09/2005 e all'Ordinanza n. 3274 del 20/03/2003 (*e s.m.i.*) il territorio comunale di Finale Emilia ricade completamente in **zona 3**.

Codice Istat 2001	Denominazione	Categoria secondo la classificazione precedente (Decreti fino al I98N.C.)	Categoria secondo la proposta del GdL del 1998	Zona ai sensi del presente documento (2003)
8037055	San Pietro in Casale	N.C.	III	3


Il 20 Maggio 2012 il territorio è stato interessato da un evento sismico di magnitudo M 5,9 con epicentro nel territorio del Comune di Finale Emilia. Si è trattato di un evento disastroso avvertito in gran parte del centro e nord Italia. Le accelerazioni di picco registrate dall'accelerometro di Mirandola durante le scosse più forti del 20 maggio e del 29 maggio sono state rispettivamente di 0,31 g e di 0,29 g, valori che in base alla carte vigenti di pericolosità sismica renderebbero stimabile in circa 2500 anni il tempo di ritorno di ciascun evento nella medesima area.


Di seguito si riporta la sismicità storica registrata per l'area interessata dal terremoto nel periodo 2005 - 2011. I dati sono stati estrapolati dal Bollettino Sismico Italiano e si riferiscono agli eventi sismici registrati con epicentro compreso entro 30 km dalla città di Mirandola.

Magnitudo	2005	2006	2007	2008	2009	2010	2011
$M \ge 4$	0	0	0	0	0	0	1 (4.8)
$3.0 \le M < 4.0$	0	0	0	2	1	0	3
M < 3.0	2	7	0	13	10	4	17

Nella Mappa Interattiva di Pericolosità Sismica dell'>Istituto Nazionale di Geofisica e Vulcanologia il territorio comunale di Finale Emilia si trova a cavallo del limite tra due fasce di valori di accelerazione simsica locale, i terreni di interesse localizzati nel parte settentrionale del territorio ricadono prevalentemente nella fascia di valori compresi tra 0,125-0,150.

Valore confermato anche tramite la valutazione dei parametri di pericolosità sismica con Software di calcolo dedicato Geostru PS di cui di seguito si riportano i dati.

Coefficienti sismici [N.T.C.]

Dati generali

Latitudine: 44,704763

Longitudine: 11,415086

Tipo opera: 2 - Opere ordinarie

Classe d'uso: Classe II

Vita nominale: 50.0[anni]

Vita di riferimento: 50.0[anni]

Sisma

Accelerazione massima (ag/g) 0.158 Coefficiente sismico orizzontale 0.050 Coefficiente sismico verticale ± 0.027

Parametri sismici su sito di riferimento

Categoria sottosuolo: C
Categoria topografica: T1

Stato Limite	Tr [anni]	a _g [g]	Fo	Tc* [s]
Operatività (SLO)	30	0,045	2,491	0,257
Danno (SLD)	50	0,057	2,489	0,270
Salvaguardia vita (SLV)	475	0,158	2,588	0,274
Prevenzione collasso (SLC)	975	0,210	2,529	0,281
Periodo di riferimento per l'azione sismica:	50			

Calcolo dei coefficienti sismici											
Muri di sostegno Stabilità dei pendii e fondazioni Paratie											
Muri di sostegno che non sono in grado di subire spostamenti.											
H (m)		1									
us (m)			0.1								
Categoria sottosuolo C ▼											
Categoria topografica		T1 ▼									
(2) (E)			SLO SLD	SLV SLC							
Ss *			1,50 1,50	1,45 1,38							
Amplificazione stratigrafica											
Cc *			1,64 1,62	1,61 1,60							
Coeff. funz categoria											
St * Amplificazione topografica			1,00 1,00	1,00 1,00							
Personalizza acc.ne massima	attesa al sito [m/s²]		0.6							
Coefficienti	SLO	SLD	SLV	SLC							
kh	0,013	0,017	0,055	0,081							
kv	0,007	0,009	0,027	0,041							
Amax [m/s²]	0,659	0,836	2,245	2,845							
Beta	0,200	0,200	0,240	0,280							

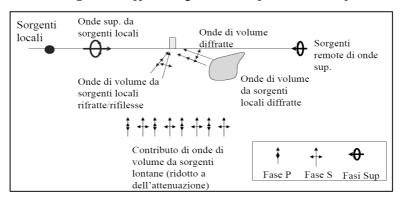
4) INDAGINE SISMICA

Nell'area è stata eseguita un'indagine sismica con tecnica di sismica passiva con tromografo digitale (TROMINO), lo scopo di quest'indagine è la caratterizzazione sismica del sottosuolo e, in particolare, la stima delle velocità delle onde di taglio fino a 30 m dal piano di posa delle fondazioni (Vs,30) come espressamente richiesto dalla normativa vigente (N.T.C. '08) nonché le frequenze di vibrazione naturali del terreno.

4.1 Cenni teorici

La tecnica dei rapporti spettrali o HVSR (Horizontal to Vertical Spectral Ratio) è totalmente non invasiva, molto rapida, si può applicare ovunque e non necessita di nessun tipo di perforazione, né di stendimenti di cavi, né di energizzazioni esterne diverse dal rumore ambientale che in natura esiste ovunque. I risultati che si possono ottenere da una registrazione di questo tipo sono:

- la <u>frequenza caratteristica di risonanza del sito</u> che rappresenta un parametro fondamentale per il corretto dimensionamento degli edifici in termini di risposta sismica locale. Si dovranno adottare adeguate precauzioni nell'edificare edifici aventi la stessa frequenza di vibrazione del terreno per evitare l'effetto di "doppia risonanza" estremamente pericolosi per la stabilità degli stessi;
- la <u>frequenza fondamentale di risonanza di un edificio</u>, qualora la misura venga effettuata all'interno dello stesso. In seguito sarà possibile confrontarla con quella caratteristica del sito e capire se in caso di sisma la struttura potrà essere o meno a rischio;
- la <u>velocità media delle onde di taglio Vs</u> calcolata tramite un apposito codice di calcolo. È necessario, per l'affidabilità del risultato, conoscere la profondità di un riflettore noto dalla stratigrafia (prova penetrometrica, sondaggio, ecc.) e riconoscibile nella curva H/V. <u>E' possibile calcolare la Vs30</u> e la relativa categoria del suolo di fondazione come esplicitamente richiesto dalle Norme Tecniche per le Costruzioni del 14 gennaio 2008.
- la <u>stratigrafia del sottosuolo</u> con un range di indagine compreso tra 0.5 e 700 m di profondità anche se il dettaglio maggiore si ha nei primi 100 metri. Il principio su cui si basa la presente tecnica, in termini di stratigrafia del sottosuolo, è rappresentato dalla definizione di strato inteso come unità distinta da quelle sopra e sottostanti per un contrasto d'impedenza, ossia per il rapporto tra i prodotti di velocità delle onde sismiche nel mezzo e densità del mezzo stesso.



Le basi teoriche della tecnica HVSR si rifanno in parte alla sismica tradizionale (riflessione, rifrazione, diffrazione) e in parte alla teoria dei microtremori. La forma di un'onda registrata in un sito x da uno strumento dipende:

- dalla forma dell'onda prodotta dalla sorgente s,
- \blacksquare dal percorso dell'onda dalla sorgente s al sito x (attenuazioni, riflessioni, rifrazioni, incanalamenti per guide d'onda),
- dalla risposta dello strumento.

Possiamo scrivere questo come:

segnale registrazione al sito x =sorgente * effetti di percorso * funzione trasferimento strumento

Il rumore sismico ambientale, presente ovunque sulla superficie terrestre, è generato dai fenomeni atmosferici (onde oceaniche, vento) e dall'attività antropica oltre che, ovviamente, dall'attività dinamica terrestre. Si chiama anche microtremore poiché riguarda oscillazioni molto piccole, molto più piccole di quelle indotte dai terremoti. I metodi che si basano sulla sua acquisizione si dicono passivi in quanto il rumore non è generato *ad hoc*, come ad esempio le esplosioni della sismica attiva.

Nel tragitto dalla sorgente *s* al sito *x* le onde elastiche (sia di terremoto che microtremore) subiscono riflessioni, rifrazioni, intrappolamenti per fenomeni di guida d'onda, attenuazioni che dipendono dalla natura del sottosuolo attraversato. Questo significa che se da un lato l'informazione relativa alla sorgente viene persa e non sono più applicabili le tecniche della sismica classica, è presente comunque una parte debolmente correlata nel segnale che può essere estratta e che contiene le informazioni relative al percorso del segnale ed in particolare relative alla struttura locale vicino al sensore. Dunque, anche il debole rumore sismico, che tradizionalmente costituisce la parte di segnale scartata dalla sismologia classica, contiene informazioni. Questa informazione è però "sepolta" all'interno del rumore casuale e può essere estratta attraverso tecniche opportune. Una di queste tecniche è la teoria dei rapporti spettrali

o, semplicemente, HVSR che è in grado di fornire stime affidabili delle frequenze principali dei sottosuoli; informazione di notevole importanza nell'ingegneria sismica.

Per l'acquisizione dei dati è stato utilizzato un tromometro digitale della ditta Micromed s.r.l. modello "Tromino".

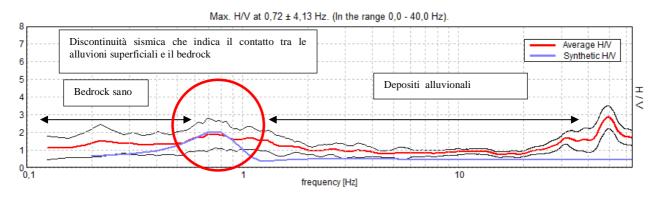
In via puramente indicativa, al fine di correlare le velocità delle onde di taglio ad un tipo di suolo, si riportano una serie d'esempi di classificazioni fatte sulla base di semplici misure H/V a stazione singola. In tutti i siti descritti, la stratigrafia è nota da sondaggi e prove penetrometriche e il profilo Vs è ricavato

anche con metodi alternativi.

TIPO DI SUOLO	Vs min [m/s]	Vs media [m/s]	Vs max [m/s]
ROCCE MOLTO DURE	1400	1620	_
(es. rocce metamorfiche molto - poco fratturate)			
ROCCE DURE (es. graniti, rocce ignee, conglomerati, arenarie e argilliti, da mediamente a poco fratturate).	700	1050	1400
SUOLI GHIAIOSI e ROCCE DA TENERE A DURE (es. rocce sedimentarie ignee tenere, arenarie, argilliti, ghiaie e suoli con > 20% di ghiaia).	375	540	700
ARGILLE COMPATTE e SUOLI SABBIOSI - GHIAIOSI (es. ghiaie e suoli con < 20% di ghiaia, sabbie da sciolte a molto compatte, limi e argille sabbiose, argille da medie a compatte e argille limose).	200	290	375
TERRENI TENERI (es. terreni di riempimento sotto falda, argille da tenere a molto tenere).	100	150	200

4.2 Interpretazione della misura eseguita

Nel caso specifico del sito in esame si è cercato di correlare i valori di picco, dello spettro di risposta HVSR, con le frequenze fondamentali di risonanza di sito.

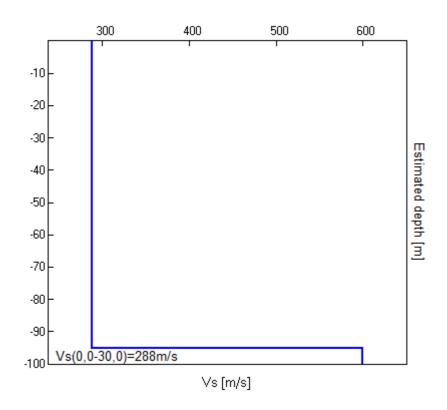

Interpretando i minimi della componente verticale come risonanza del modo fondamentale dell'onda di Rayleigh e i picchi delle componenti orizzontali come contributo delle onde SH, si sono potute ricavare le frequenze relative ad ogni discontinuità sismica.

Sapendo che i valori di picco sono proporzionali ai contrasti di rigidità e utilizzando le informazioni lito – stratigrafiche ricavate dai sondaggi effettuati nei pressi del punto indagato, si è estrapolata una stratigrafia geofisica del sottosuolo.

La frequenza di risonanza di sito, caratterizzata da un rapporto H/V compreso tra 0.6 e 0.9, è risultata di \approx 0.72 Hz.

Frequenza fondamentale di risonanza di sito	
0,72 Hz	

E' ormai consolidata, sia a livello accademico sia professionale, l'ipotesi che le strutture subiscono le sollecitazioni sismiche maggiori quando c'è coincidenza tra la frequenza di vibrazione naturale del terreno investito da un'onda sismica e quella naturale dell'edificio.



Si dovrà quindi porre estrema attenzione nell'edificare strutture aventi lo stesso periodo di vibrazione del terreno poiché il rapporto H/V calcolato è tale da ipotizzare un elevato fattore di amplificazione del moto sismico in superficie.

La ricostruzione sismo - stratigrafica di sito può essere schematizzata in un sismo - strato poco addensato ($Vs \approx 288 \text{ m/s}$) fino a circa 95 m dal p.c. locale e, per valori di profondità maggiori, da un materiale caratterizzato da una velocità di propagazione delle onde S di $\approx 600 \text{ m/s}$ (v. *modello sismo – stratigrafico interpretativo* riportato a seguire) identificabile con il bedrock sismico.

Il rilievo nello specifico ha fornito i seguenti dati sismici (modello sismo – stratigrafico interpretativo):

H.V.S.R.	Velocità onde di taglio [m/s]	Spessori [m]	Profondità [m]
I SISMOSTRATO	288	95,00	0.0 - 95.0
II SISMOSTRATO	600	Inf.	95,0 – inf.

4.3 Modello sismico locale

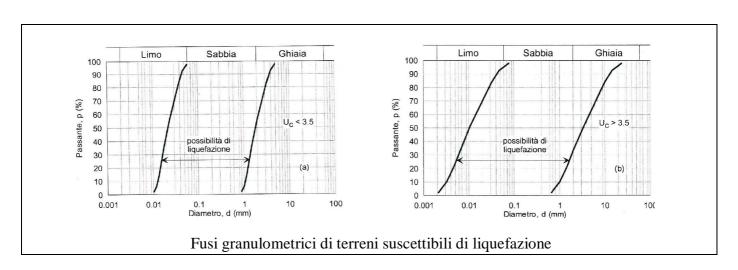
Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi o in rapporto ad un approccio semplificato che si basa sull'individuazione di Categorie di Sottosuolo di riferimento. Per definire tali categorie, il D.M. 14/01/08 prevede, in questo caso, il calcolo del parametro Vs,30, ovvero della velocità equivalente di propagazione delle onde di taglio Vs entro 30 m di profondità dal piano di posa delle fondazioni.

Categoria	Descrizione											
	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di											
A	Vs,30 superiori a 800 m/s, eventualmente comprendenti in superficie uno											
	strato di alterazione, con spessore massimo pari a 3 m											
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a											
	grana fina molto consistenti, con spessori superiori a 30 m, caratterizzati da											
	un graduale miglioramento delle proprietà meccaniche con la profondità e da											
	valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 > 50 nei											
	terreni a grana grossa e cu,30 >250 kPa nei terreni a grana fina)											
	Depositi di terreni a grana grossa mediamente addensati o terreni a grana											
	fina mediamente consistenti, con spessori superiori a 30 m, caratterizzati da											
C	un graduale miglioramento delle proprietà meccaniche con la profondità e da											
	valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 <nspt,30 50="" <="" nei<="" td=""></nspt,30>											
	terreni a grana grossa e 70 <cu,30 <250="" a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30>											
	Depositi di terreni a grana grossa scarsamente addensati o di terreni a											
	grana fina scarsamente consistenti, con spessori superiori a 30 m,											
D	caratterizzati da un graduale miglioramento delle proprietà meccaniche con la											
	profondità e da valori di Vs,30 inferiori a 180 m/s (ovvero NSPT,30 < 15 nei											
	terreni a grana grossa e cu,30 <70 kPa nei terreni a grana fina)											
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti											
E	sul substrato di riferimento (con Vs > 800 m/s)											

Esistono poi due categorie speciali di sottosuolo, che sono quelle denominate dalle sigle S1 e S2, per le quali le NTC08 richiedono che l'azione sismica sia definita tramite il ricorso a studi speciali. Per queste categorie di sottosuolo non è quindi possibile utilizzare l'approccio semplificato basato sul coefficiente di amplificazione stratigrafica.

	Depositi di terreni caratterizzati da valori di Vs,30 inferiori a 100 m/s					
S1	(ovvero 10 < cu,30 < 20 kPa), che includono uno strato di almeno 8 m di					
51	terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di					
	torba o di argille altamente organiche					
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o					
52	qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti					

Dall'indagine sismica effettuata è possibile calcolare la velocità media di propagazione delle onde di taglio fino a 30 m dal piano di posa delle fondazioni come espressamente richiesto dalla normativa vigente (*Norme Tecniche sulle Costruzioni – D.M. 14/01/2008*). La velocità delle onde sismiche di taglio (Vs), calcolate per i primi 30 m di spessore, è risultata pari a **288 m/s**.


Dalla ricostruzione del quadro geofisico emerso dal presente studio e dalle indicazioni normative si prevedere l'inserimento del sito d'indagine nella **Categoria di Sottosuolo C.**

4.5 Liquefazione dei terreni

In base alle Nuove Norme Tecniche sulle Costruzioni la progettazione delle opere di fondazione richiede preliminarmente la valutazione della sicurezza del sito nei confronti della liquefazione, si tratta di quei fenomeni associati alla perdita di resistenza al taglio o all'accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate (paragrafo 7.11.3.4 Stabilità nei confronti della liquefazione).

Tale verifica può essere omessa se si manifesta almeno una delle seguenti circostanze:

- Eventi sismici attesi di magnitudo M inferiore a 5;
- Accelerazioni massime attese al piano campagna in assenza di manufatti (condizione di campo libero) minori di 0.1g;
- Profondità media della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- Depositi costituiti da sabbie pulite di data resistenza penetrometrica (vedi par. 7.11.3.4.2);
- Distribuzione granulometrica esterna alle zone indicate nelle figure sottostanti.

Nel caso specifico i terreni di interesse presentano una granulometria con limo sabbioso e argilloso prevalente con intercalazioni sabbioso limose, con falda rilevata alla profondità di circa 2.00 m dal piano campagna. In base a quanto riportato nel grafico di disaggregazione dell'Istituto Nazionale di Geofisica e Vulcanologia l'area risuta caratterizzata da Magnitudo M inferiori a 5 (4.98). In base a tali dati sarebbe possibile omettere la verifica a liquefazione dei terreni, ma i recenti eventi sismici con Magnitudo superiore e la presenza di terreni a granulometria medio fine con frequenti intercalazioni sabbiose inducono a prendere in considerazione il fenomeno. I metodi semplificati (Geostru PS) utilizzati per il calcolo si basano sul rapporto che intercorre fra le sollecitazioni di taglio che producono liquefazione e quelle indotte dal terremoto; hanno perciò bisogno di valutare i parametri relativi sia all'evento sismico sia al deposito, determinati questi ultimi privilegiando metodi basati su correlazioni della resistenza alla liquefazione con parametri desunti da prove in situ. La resistenza del deposito alla liquefazione viene quindi valutata in termini di fattore di resistenza alla liquefazione

$$(1.0)F_S = \frac{CRR}{CSR}$$

dove CRR (Cyclic Resistance Ratio) indica la resistenza del terreno agli sforzi di taglio ciclico e CSR (Cyclic Stress Ratio) la sollecitazione di taglio massima indotta dal sisma.

I metodi semplificati proposti differiscono fra loro soprattutto per il modo con cui viene ricavata CRR, la resistenza alla liquefazione. Il parametro maggiormente utilizzato è il numero dei colpi nella prova SPT anche se oggi, con il progredire delle conoscenze, si preferisce valutare il potenziale di liquefazione utilizzando prove statiche (CPT) o prove di misurazione delle onde di taglio Vs. Questi metodi sono in genere utilizzati per la progettazione di opere di media importanza.

CALCOLO DELLA SUSCETTIBILITA' DI LIQUEFAZIONE

Dati generali

Sovraccarico sul piano campagna= 133 Kpa

Base sovraccarico= 3,0 m

Lunghezza sovraccarico= 3.0 m

Coefficiente di Poisson= 0,3

Incremento tensioni metodo di: Boussinesq

Numero di strati = 5

Profondità della falda = 2.0 m

Magnitudo del sisma = 5,9

Accelerazione massima al suolo = 0,15

Parametri geotecnici ottenuti dalle prove CPT

Metodo di Robertson e Wride (1997)

Risultati

Correzione per la magnitudo (MSF) = 1,85

Verifica	Profon	Pressio	Pressio	Correzi	Resiste	Coeffic	Resiste	Sforzo	Coefficiente di			Rischio di
Nr.	dità dal	ne	ne	one per	nza alla	iente	nza alla	di	sicurezza	di	liquefazione	liquefazione
	p. c.	litostati	vertical	la	punta	riduttiv	liquefa	taglio	(Fs)	liquefazione	_	_
	(m)	ca	e	pressio	corretta	О		normali		•		
	, ,	totale	efficac	ne	qc1N	(rd)	(CRR)	zzato				
		(KPa)	e	litostati	(KPa)	, ,	, ,	(CSR)				
			(KPa)	ca								
				efficac								
				e								
				CQ								
1	2,20	67,47	65,51							NL	0	Molto basso
2	2,40	70,20	66,28							NL	0	Molto basso
3	2,60	72,91	67,03							NL	0	Molto basso
4	2,80	75,61	67,77							NL	0	Molto basso
5	3,00	78,72	68,91	1,20	-2,79	0,98	0,05	0,06	0,81	L	5,27	Alto
6	3,20	81,84	70,07	1,19	-2,77	0,98	0,05	0,06	0,79	L	6,18	Alto
7	3,40	84,99	71,26	1,18	-2,74	0,97	0,05	0,06	0,78	L	6,84	Alto
8	3,60	88,17	72,48	1,17	-2,72	0,97	0,05	0,06	0,76	L	7,86	Alto
9	3,80	91,40	73,74							NL	0	Molto basso
10	4,00	94,66	75,05							NL	0	Molto basso
11	4,20	97,97	76,39							NL	0	Molto basso
12	4,40	101,32	77,78							NL	0	Molto basso
13	4,60	104,71	79,21							NL	0	Molto basso
14	4,80	107,94	80,49	1,11	-6,95	0,96	0,04	0,07	0,65	L	14,78	Alto
15	5,00	111,22	81,80	1,11	-6,95	0,96	0,04	0,07	0,64	L	15,75	Molto alto
16	5,20	114,54	83,16	1,10	-6,88	0,96	0,04	0,07	0,63	L	16,74	Molto alto
17	5,40	117,90	84,56	1,09	-6,82	0,96	0,04	0,07	0,63	L	17,28	Molto alto
18	5,60	121,29	85,99	1,08	-6,76	0,96	0,04	0,07	0,62	L	18,30	Molto alto
19	5,80	124,72	87,45	1,07	-6,70	0,96	0,04	0,07	0,62	L	18,84	Molto alto
20	6,00	128,18	88,95	1,06	-6,63	0,95	0,04	0,07	0,61	L	19,89	Molto alto
21	6,20	131,67	90,49	1,05	-6,57	0,95	0,04	0,07	0,61	L	20,43	Molto alto
22	6,40	135,20	92,05	1,04	-6,51	0,95	0,04	0,07	0,60	L	21,50	Molto alto
23	6,60	138,75	93,63	1,03	-6,45	0,95	0,04	0,07	0,60	L	22,04	Molto alto
24	6,80	142,32	95,25	1,02	-6,38	0,95	0,04	0,07	0,60	L	22,58	Molto alto
25	7,00	145,92	96,89	1,02	-6,38	0,95	0,04	0,08	0,59	L	23,68	Molto alto
26	7,20	149,54	98,55	1,01	-6,32	0,94	0,04	0,08	0,59	L	24,21	Molto alto
27	7,40	153,19	100,23	1,00	-6,26	0,94	0,04	0,08	0,59	L	24,73	Molto alto
28	7,60	156,85	101,93	0,99	-6,20	0,94	0,04	0,08	0,59	L	25,24	Molto alto
29	7,80	160,53	103,65	0,98	-6,13	0,94	0,04	0,08	0,58	L	26,37	Molto alto
30	8,00	164,23	105,39	0,97	-6,07	0,94	0,04	0,08	0,58	L	26,88	Molto alto
31	8,20	167,95	107,15	0,97	-6,07	0,94	0,04	0,08	0,58	L	27,38	Molto alto
32	8,40	171,68	108,92	0,96	-6,01	0,94	0,04	0,08	0,58	L	27,87	Molto alto
33	8,60	175,42	110,70	0,95	-5,95	0,93	0,05	0,08	0,58	L	28,35	Molto alto

34	8,80	179,18	112,50	0,94	-5,88	0,93	0,05	0,08	0,58	L	28,83	Molto alto
35	9,00	183,15	114,51							NL	0	Molto basso
36	9,20	187,14	116,53							NL	0	Molto basso
37	9,40	191,13	118,56							NL	0	Molto basso
38	9,60	195,13	120,60							NL	0	Molto basso
39	9,80	199,15	122,66							NL	0	Molto basso
40	10,00	203,17	124,72						_	NL	0	Molto basso

EC8 (CPT) (1998)

Risultati

Correzione per la magnitudo (MSF) = 2,33

Verifica	Profondità	Pressione	Pressione	Correzion	Resistenza	Coefficien	Resistenza	Sforzo di	Coefficien	Suscettibil	Probabilit
Nr.	dal p. c.	litostatica	verticale	e per la	alla punta	te	alla	taglio	te di	ità di	à di
111.	(m)	totale	efficace	press.	corretta	riduttivo	liquefazio	normalizz	sicurezza	liquefazio	liquefazio
	(111)	(KPa)	(KPa)	litostatica	qc1 (bar)	(rd)	ne	ato	(Fs)	ne	ne
		(111 41)	(111 11)	efficace	qui (oui)	(10)	(CRR)	(CSR)	(13)		(%)
				(CN)			()	()			(,*)
1	2,20	67,47	65,51	1,24						NL	0,00
2	2,40	70,20	66,28	1,23						NL	0,00
3	2,60	72,91	67,03	1,22						NL	0,00
4	2,80	75,61	67,77	1,21						NL	0,00
5	3,00	78,72	68,91	1,20	0,78	0,98	0,05	0,05	0,89	L	34,14
6	3,20	81,84	70,07	1,19	0,77	0,98	0,05	0,06	0,87	L	35,74
7	3,40	84,99	71,26	1,18	0,77	0,97	0,05	0,06	0,85	L	37,41
8	3,60	88,17	72,48	1,17	0,76	0,97	0,05	0,06	0,83	L	39,16
9	3,80	91,40	73,74	1,16	,	,			,	NL	0,00
10	4,00	94,66	75,05	1,15						NL	0,00
11	4,20	97,97	76,39	1,14						NL	0,00
12	4,40	101,32	77,78	1,13						NL	0,00
13	4,60	104,71	79,21	1,12						NL	0,00
14	4,80	107,94	80,49	1,11	1,94	0,96	0,05	0,06	0,76	L	45,82
15	5,00	111,22	81,80	1,11	1,94	0,96	0,05	0,07	0,75	L	46,84
16	5,20	114,54	83,16	1,10	1,93	0,96	0,05	0,07	0,74	L	47,88
17	5,40	117,90	84,56	1,09	1,91	0,96	0,05	0,07	0,73	L	48,93
18	5,60	121,29	85,99	1,08	1,89	0,96	0,05	0,07	0,72	L	50,00
19	5,80	124,72	87,45	1,07	1,87	0,96	0,05	0,07	0,71	L	51,08
20	6,00	128,18	88,95	1,06	1,86	0,95	0,05	0,07	0,71	L	51,08
21	6,20	131,67	90,49	1,05	1,84	0,95	0,05	0,07	0,70	L	52,18
22	6,40	135,20	92,05	1,04	1,82	0,95	0,05	0,07	0,69	L	53,29
23	6,60	138,75	93,63	1,03	1,80	0,95	0,05	0,07	0,69	L	53,29
24	6,80	142,32	95,25	1,02	1,79	0,95	0,05	0,07	0,68	L	54,42
25	7,00	145,92	96,89	1,02	1,79	0,95	0,05	0,07	0,68	L	54,42
26	7,20	149,54	98,55	1,01	1,77	0,94	0,05	0,07	0,67	L	55,55
27	7,40	153,19	100,23	1,00	1,75	0,94	0,05	0,07	0,67	L	55,55
28	7,60	156,85	101,93	0,99	1,73	0,94	0,05	0,07	0,66	L	56,70
29	7,80	160,53	103,65	0,98	1,72	0,94	0,05	0,07	0,66	L	56,70
30	8,00	164,23	105,39	0,97	1,70	0,94	0,05	0,07	0,65	L	57,86
31	8,20	167,95	107,15	0,97	1,70	0,94	0,05	0,08	0,65	L	57,86
32	8,40	171,68	108,92	0,96	1,68	0,94	0,05	0,08	0,65	L	57,86
33	8,60	175,42	110,70	0,95	1,66	0,93	0,05	0,08	0,64	L	59,03
34	8,80	179,18	112,50	0,94	1,65	0,93	0,05	0,08	0,64	L	59,03
35	9,00	183,15	114,51	0,93						NL	0,00
36	9,20	187,14	116,53	0,93						NL	0,00

37	9,40	191,13	118,56	0,92			NL	0,00
38	9,60	195,13	120,60	0,91			NL	0,00
39	9,80	199,15	122,66	0,90			NL	0,00
40	10,00	203,17	124,72	0,90			NL	0,00

RELAZIONE GEOTECNICA

Il progetto prevede la costruzione di un capannone che si svilupperà interamente fuori terra. In base alle indicazioni progettuali e alle caratteristiche dei terreni indagati, i calcoli di seguito riportati si riferiscono a fondazioni continue superficiali sui terreni argillosi. Vista la presenza di terreni poco consistente si consiglia di irrigidire la struttura di fondazione. Si consiglia inoltre di svincolare tramite giunto sismico il nuovo capannone dalle strutture adiacenti.

5. VERIFICA AGLI STATI LIMITE ULTIMI (SLU)

Con l'utilizzo delle Norme Tecniche sulle Costruzioni si dovranno valutare la sicurezza e le prestazione di un'opera o di una parte di essa in relazione agli <u>stati limite che si possono verificare durante la vita nominale</u>. Stato limite è la condizione superata la quale l'opera non soddisfa più le esigenze per le quali è stata progettata.

In particolare le opere e le varie tipologie strutturali dovranno possedere i seguenti requisiti:

- i. Sicurezza nei confronti di stati limite ultimi (SLU): capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possono compromettere l'incolumità delle persone ovvero comportare la perdita di beni, ovvero provocare vari danni ambientali e sociali, ovvero mettere fuori servizio l'opera;
- ii. Sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;
- iii. *Robustezza nei confronti di azioni eccezionali:* capacità di evitare danni sproporzionati rispetto all'entità delle cause innescanti quali incendio, esplosioni, urti.

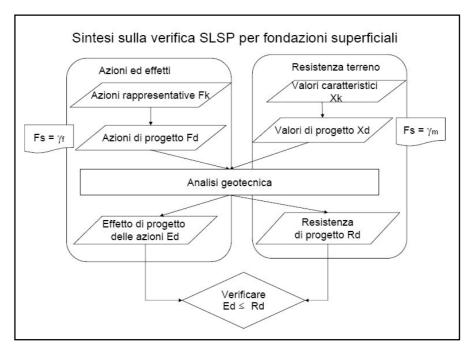
Nell'ambito del metodo degli stati limite la misura della sicurezza si ottiene con il "Metodo semiprobabilistico dei Coefficienti Parziali" di sicurezza espresso dall'equazione:

 $Rd \ge Ed$ ovvero $Rd - Ed \ge 0$

dove:

Rd = valore di progetto della resistenza del sistema geotecnico;

Ed = valore di progetto dell'azione o dell'effetto dell'azione.


L'effetto delle azioni e resistenza sono espresse in funzione:

delle azioni di progetto γFFk

- dei parametri di progetto XK/γM
- e dalla geometria di progetto ad.

L'effetto delle azioni può essere valutato direttamente come $Ed = Ek^*\gamma E$. Nella formulazione della resistenza Rd, compare esplicitamente un coefficiente γR che opera direttamente sulla resistenza del sistema.

La verifica della suddetta condizione ($Ed \le Rd$) è stata effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

CARICHI	EFFETTO	COEFFICIENTE PARZIALE γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Parametri	Favorevole	No.	0,9	1,0	1,0
Parametri	Sfavorevole	$\gamma_{ m G1}$	1,1	1,3	1,0
Parametri non	Favorevole	••	0,0	0,0	0,0
strutturali	Sfavorevole	$\gamma_{ m G2}$	1,5	1,5	1,3
Variabili	Favorevole		0,0	0,0	0,0
	Sfavorevole	γQi	1,5	1,5	1,3
Tabella 6.2.1 - Coefficienti parziali per le azioni o per l'effetto delle azioni					

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE γ _M	(M1)	(M2)	
-----------	---	---	------	------	--

Tangente dell'angolo di resistenza al taglio	tan φ'κ	γ_{ϕ}	1,0	1,25
Coesione efficace	с'к	γς.	1,0	1,25
Resistenza non drenata	Cuk	γcu	1,0	1,4
Peso dell'unità di volume	γ	γγ	1,0	1,0
Tabella 6.2.2- Coefficienti parziali per i parametri geotecnici del terreno				

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi:

- Nel primo approccio progettuale (Approccio 1) sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno, mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico;
- Nel secondo approccio progettuale (Approccio 2) è prevista un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

6. CALCOLO DELLA CAPACITA' PORTANTE

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Le verifiche che sono state effettuate nei confronti degli stati limite ultimo al collasso per carico limite dell'insieme fondazione – terreno, accertando che la condizione $Ed \le Rd$, qualora siano note le azioni di progetto (Ed) sia soddisfatta per ogni stato limite considerato.

La valutazione del carico limite di progetto Rd sulla fondazione viene solitamente effettuata secondo la teoria elaborata da *Brinch-Hansen*, (Ec7-Ec8) utilizzando, per condizioni drenate, la formula generale:

$$Rd = c' N_c s_c i_c + q' N_q s_q i_q + 0.5 \gamma' B' N_{\gamma} s_{\gamma} i_{\gamma}$$

dove:

 $\mathbf{c'}$ = coesione

q = pressione litostatica totale sul piano di posa.

 \mathbf{B} = larghezza della fondazione

Nc, N_y , Nq = fattori adimensionali di portanza;

 $\mathbf{s_c}, \mathbf{s_{\gamma}}, \mathbf{s_q} = \text{fattori di forma};$

ic, i_q , i_γ = fattore correttivo per l'inclinazione del carico dovuta ad un carico H.

Collasso per carico limite dell'insieme fondazione – terreno

Le verifiche si sono effettuate, tenendo conto dei valori e i coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I, seguendo l'**Approccio 1**:

Combinazione 1: (A1+M1+R1)

Combinazione 2: (A2+M2+R2)

VERIFICA	COEFFICENTE PARZIALE (R1)	COEFFICENTE PARZIALE (R2)	COEFFICENTE PARZIALE (R3)	
Capacità Portante	$\gamma_R = 1.0$	$\gamma_R = 1.8$	$\gamma_R = 2.3$	
Scorrimento	$\gamma_R = 1,0$	$\gamma_R = 1,1$	$\gamma_R = 1,1$	
Tabella 6.4.I - Coefficienti parziali yaper le verifiche agli stati limite ultimi di fondazioni superficiali				

Per il calcolo della capacità portante sono stati utilizzati i parametri relativi al livello stratigrafico A costituito da argille e argille limose.

Approccio 1:

Combinazione 1: (A1+M1+R1)

Le resistenze di progetto assumono un valore di 328 KN /m² (R1).

Combinazione 2: (A2+M2+R2)

Le resistenze di progetto assumono un valore di 133 KN /m² (R2).

Approccio 2: A1 + M1 + R3

Le resistenze di progetto assumono un valore di $142 \text{ KN /m}^2 (R3)$.

CALCOLO PORTANZA DI FONDAZIONI SUPERFICIALI

DATI GENERALI

Azione sismica

Larghezza fondazione

Lunghezza fondazione

Profondità piano di posa

Altezza di incastro

Profondità falda

NTC 2008

3,5 m

1,5 m

1,0 m

1,0 m

STRATIGRAFIA TERRENO

ORIZZONTE	Spessore	Peso unità di	Peso unità di	Angolo di	Coesione	Coesione	Modulo	Modulo
	strato	volume	volume saturo	attrito	$[kN/m^2]$	non drenata	Elastico	Edometrico
	[m]	$[kN/m^3]$	$[kN/m^3]$	[°]		$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$
A	2,8	18,16	18,95	0,0	0,0	44,0	0,0	4270,21
В	0,8	17,65	20,59	31,0	0,0	0,0	0,0	7722,74
С	1,0	18,01	18,79	0,0	0,0	40,0	0,0	4138,75
D	4,2	17,65	20,59	33,0	0,0	0,0	0,0	11011,89
Е	1,2	17,64	18,42	0,0	0,0	35,0	0,0	3818,6

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione	Tangente	Coesione	Coesione	Peso Unità	Peso unità	Coef. Rid.	Coef.Rid.Ca
	Sismica	angolo di	efficace	non drenata	volume in	volume	Capacità	pacità
		resistenza al			fondazione	copertura	portante	portante
		taglio					verticale	orizzontale
1	No	1	1	1	1	1	1	1
2	No	1,25	1,25	1,4	1	1	1,8	1,1
3	No	1,25	1,25	1,4	1	1	1,8	1,1
4	No	1	1	1	1	1	1	1
5	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...A2+M2+R2

Autore: HANSEN (1970)

Carico limite [Qult] 239,7 kN/m²
Resistenza di progetto[Rd] 133,17 kN/m²
Fattore sicurezza [Fs=Qult/Ed] --

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982) Costante di Winkler 9588,18 kN/m³

A1+M1+R1

Autore: HANSEN (1970) (Condizione non drenata)

Fattore [Nq]	1,0
Fattore [Nc]	5,14
Fattore [Ng]	0,0
Fattore forma [Sc]	0,2
Fattore profondità [Dc]	0,17
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	328,32 kN/m ²
Resistenza di progetto	328,32 kN/m²

A2+M2+R2

1

Autore: HANSEN (1970) (Condizione non drenata)

Fattore correzione sismico inerziale [zc] ====================================	1,0 ====================================	:====
Fattore correzione sismico inerziale [zq] Fattore correzione sismico inerziale [zg]	1,0 1,0	
Fattore profondità [Dc]	0,17	
Fattore forma [Sc]	0,2	
Fattore [Ng]	0,0	
Fattore [Nc]	5,14	
Fattore [Nq]	1,0	

Sisma

Autore: HANSEN (1970) (Condizione non drenata)

Fattore [Nq]	1,0
Fattore [Nc]	5,14
Fattore [Ng]	0,0
Fattore forma [Sc]	0,2
Fattore profondità [Dc]	0,17
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	239,7 kN/m²
Resistenza di progetto	$133,17 \text{ kN/m}^2$

Autore: HANSEN (1970) (Condizione non drenata)

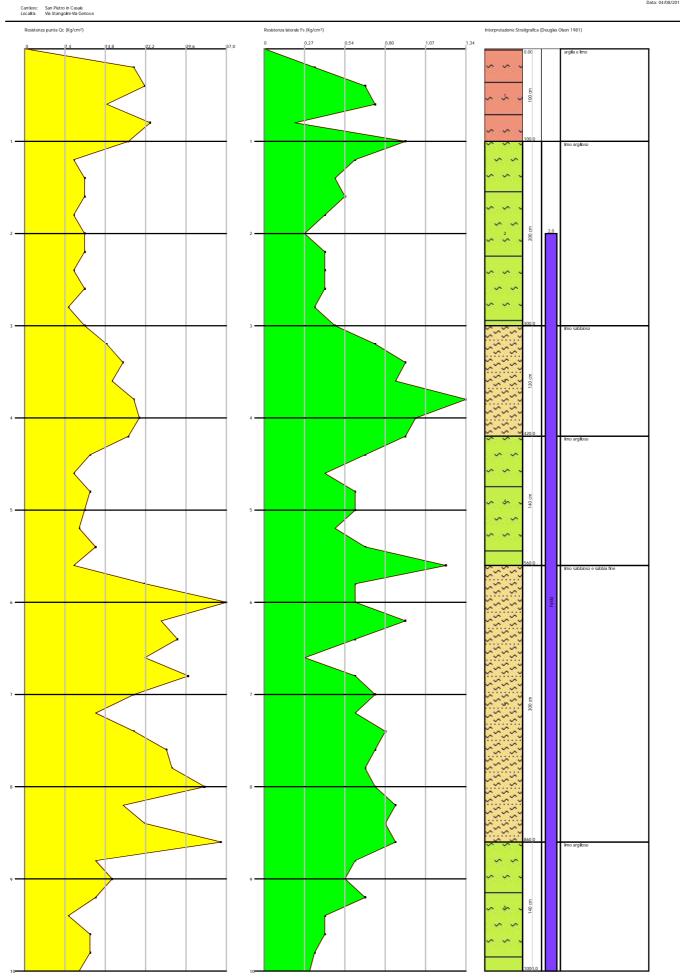
Fattore [Nq]	1,0
Fattore [Nc]	5,14
Fattore [Ng]	0,0
Fattore forma [Sc]	0,2
Fattore profondità [Dc]	0,17
Fattore correzione sismico inerziale [zq]	1,0
Fattore correzione sismico inerziale [zg]	1,0
Fattore correzione sismico inerziale [zc]	1,0
Carico limite	328,32 kN/m²
Resistenza di progetto	142,75 kN/m ²

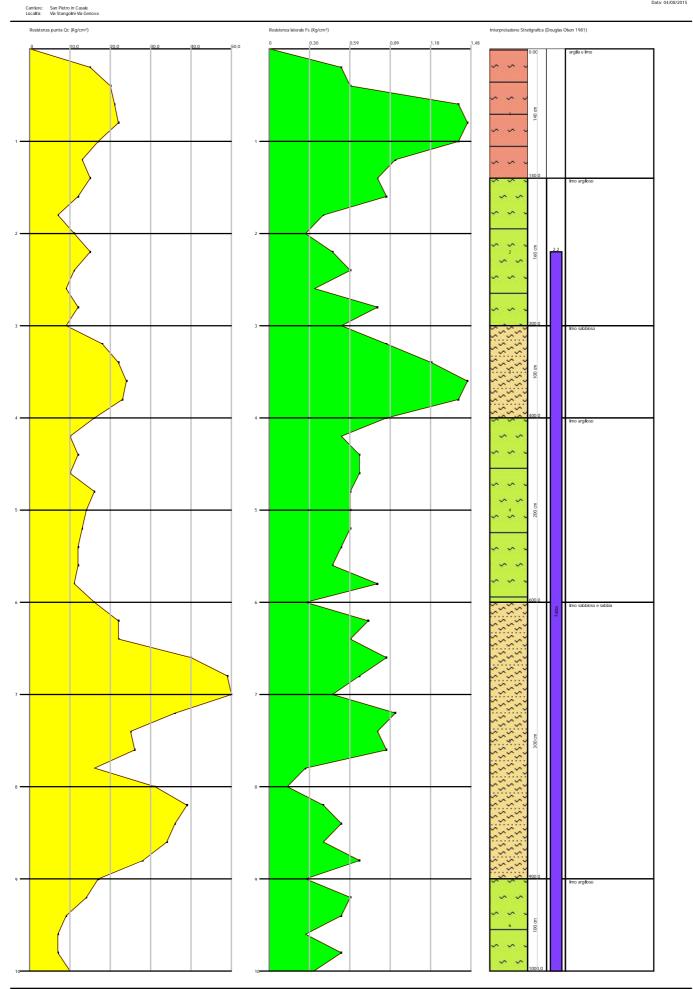
PROVA PENETROMETRICA STATICA

Committente:

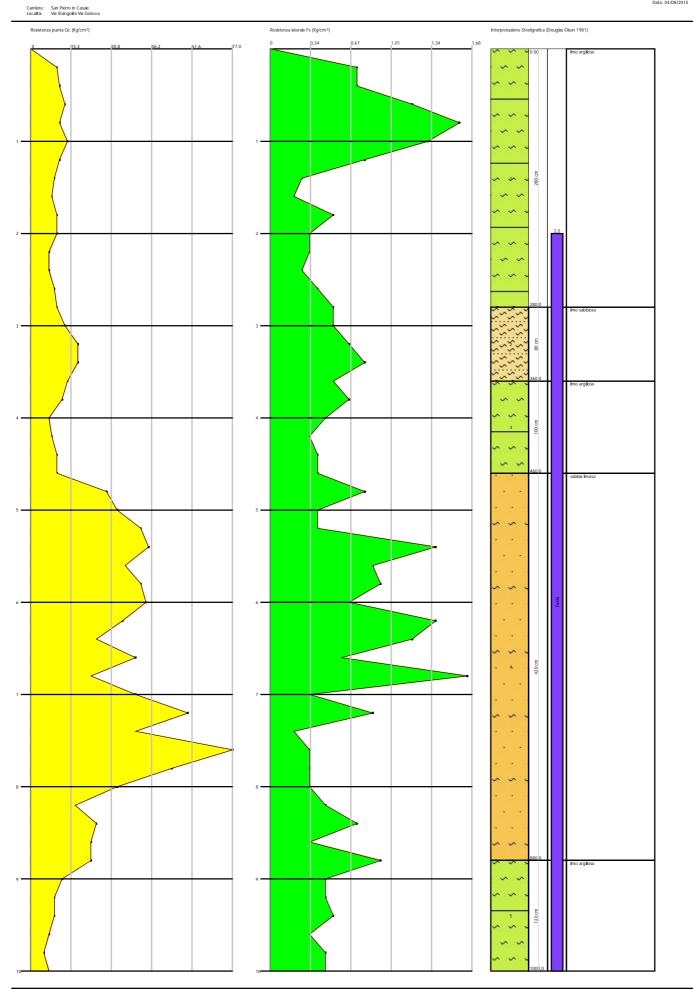
Cantiere: San Pietro in Casale

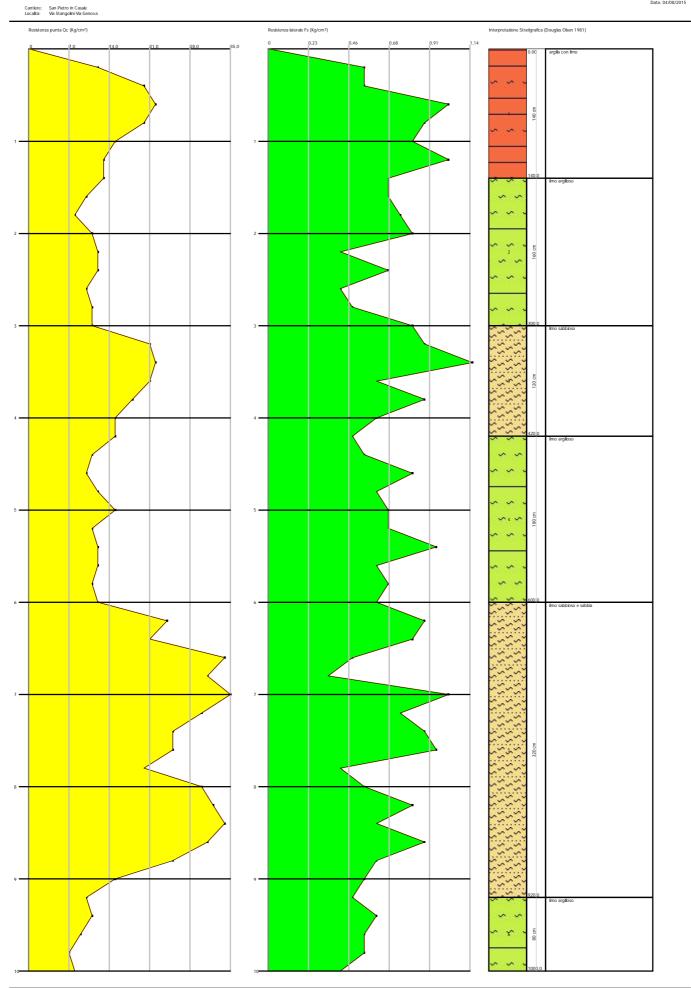
Località: Via Stangolini-Via Genova




Caratteristiche Strumentali PAGANI TG 63~(200~kN)

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica	35,7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10


Probe CPT - Cone Penetration Nr.1 Strumento utilizzato PAGANI TG 63 (200 kN)


Probe CPT - Cone Penetration N° 2 Strumento utilizzato PAGANI TG 63 (200 kN)

Probe CPT - Cone Penetration Nr.3 Strumento utilizzato PAGANI TG 63 (200 kN)

Probe CPT - Cone Penetration Nr.4 Strumento utilizzato PAGANI TG 63 (200 kN)

PROVA N° 1

Strumento utilizzato: PAGANI TG 63 (200 kN) Prova eseguita in data: 04/08/2015
Profondità prova: 10,00 mt Località: Via Stangolini-Via Genova

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	20,00	30,0	20,0	0,333	60,06	1,7
0,40	22,00	27,0	22,0	0,667	32,984	3,0
0,60	15,00	25,0	15,0	0,733	20,464	4,9
0,80	23,00	34,0	23,0	0,2	115,0	0,9
1,00	19,00	22,0	19,0	0,933	20,364	4,9
1,20	9,00	23,0	9,0	0,6	15,0	6,7
1,40	11,00	20,0	11,0	0,467	23,555	4,2
1,60	11,00	18,0	11,0	0,533	20,638	4,8
1,80	9,00	17,0	9,0	0,4	22,5	4,4
2,00	11,00	17,0	11,0	0,267	41,199	2,4
2,20	11,00	15,0	11,0	0,4	27,5	3,6
2,40	9,00	15,0	9,0	0,4	22,5	4,4
2,60	11,00	17,0	11,0	0,4	27,5	3,6
2,80	8,00	14,0	8,0	0,333	24,024	4,2
3,00	11,00	16,0	11,0	0,467	23,555	4,2
3,20	15,00	22,0	15,0	0,733	20,464	4,9
3,40	18,00	29,0	18,0	0,933	19,293	5,2
3,60	16,00	30,0	16,0	0,867	18,454	5,4
3,80	20,00	33,0	20,0	1,333	15,004	6,7
4,00	21,00	41,0	21,0	1,0	21,0	4,8
4,20	19,00	34,0	19,0	0,933	20,364	4,9
4,40	12,00	26,0	12,0	0,667	17,991	5,6
4,60	9,00	19,0	9,0	0,4	22,5	4,4
4,80	12,00	18,0	12,0	0,6	20,0	5,0
5,00	11,00	20,0	11,0	0,6	18,333	5,5
5,20	10,00	19,0	10,0	0,467	21,413	4,7
5,40	13,00	20,0	13,0	0,667	19,49	5,1
5,60	9,00	19,0	9,0	1,2	7,5	13,3
5,80	22,00	40,0	22,0	0,6	36,667	2,7
6,00	37,00	46,0	37,0	0,6	61,667	1,6
6,20	25,00	34,0	25,0	0,933	26,795	3,7
6,40	28,00	42,0	28,0	0,6	46,667	2,1
6,60	22,00	31,0	22,0	0,267	82,397	1,2
6,80	30,00	34,0	30,0	0,6 0,733	50,0	2,0
7,00 7,20	20,00 13,00	29,0 24,0	20,0 13,0	0,733	27,285 21,667	3,7 4,6
7,40 7,60	20,00 26,00	29,0 38,0	20,0 26,0	0,8 0,733	25,0 35,471	4,0 2,8
7,80	27,00	38,0	27,0	0,733	40,48	2,5
8,00	33,00	43,0	33,0	0,733	45,02	2,3
8,20	18,00	29,0	18,0	0,753	20,761	4,8
8,40	22,00	35,0	22,0	0,807	27,5	3,6
8,60	36,00	48,0	36,0	0,867	41,522	2,4
8,80	13,00	26,0	13,0	0,6	21,667	4,6
9,00	16,00	25,0	16,0	0,533	30,019	3,3
9,20	13,00	21,0	13,0	0,667	19,49	5,1
9,40	8,00	18,0	8,0	0,4	20,0	5,0
9,60	12,00	18,0	12,0	0,4	30,0	3,3
9,80	12,00	18,0	12,0	0,333	36,036	2,8
10,00	10,00	15,0	10,0	0,3	33,333	
*	•	*	*	*	,	

PROVA N° 2

Strumento utilizzato: PAGANI TG 63 (200 kN) Prova eseguita in data: 04/08/2015 Profondità prova: 10,00 mt Località: Via Stangolini-Via Genova

	_			_		
Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20	15,00	18,0	15,0	0,533	28,143	3,6
0,40	20,00	28,0	20,0	0,6	33,333	3,0
0,60	21,00	30,0	21,0	1,4	15,0	6,7
0,80	22,00	43,0	22,0	1,467	14,997	6,7
1,00	17,00	39,0	17,0	1,4	12,143	8,2
1,20	13,00	34,0	13,0	0,933	13,934	7,2
1,40	15,00	29,0	15,0	0,8	18,75	5,3
1,60	12,00	24,0	12,0	0,867	13,841	7,2

1,80	7,00	20,0	7,0	0,4	17,5	5,7
2,00	11,00	17,0	11,0	0,267	41,199	2,4
2,20	15,00	19,0	15,0	0,467	32,12	3,1
2,40	11,00	18,0	11,0	0,6	18,333	5,5
2,60	9,00	18,0	9,0	0,333	27,027	3,7
2,80	12,00	17,0	12,0	0,8	15,0	6,7
3,00	9,00	21,0	9,0	0,533	16,886	5,9
3,20	18,00	26,0	18,0	0,867	20,761	4,8
3,40	22,00	35,0	22,0	1,2	18,333	5,5
3,60	24,00	42,0	24,0	1,467	16,36	6,1
3,80	23,00	45,0	23,0	1,4	16,429	6,1
4,00	16,00	37,0	16,0	0,867	18,454	5,4
4,20	10,00	23,0	10,0	0,533	18,762	5,3
4,40	12,00	20,0	12,0	0,667	17,991	5,6
4,60	10,00	20,0	10,0	0,667	14,993	6,7
4,80	16,00	26,0	16,0	0,6	26,667	3,8
5,00	14,00	23,0	14,0	0,6	23,333	4,3
5,20	13,00	22,0	13,0	0,6	21,667	4,6
5,40	12,00	21,0	12,0	0,533	22,514	4,4
5,60	12,00	20,0	12,0	0,467	25,696	3,9
5,80	11,00	18,0	11,0	0,8	13,75	7,3
6,00	16,00	28,0	16,0	0,267	59,925	1,7
6,20	22,00	26,0	22,0	0,733	30,014	3,3
6,40	22,00	33,0	22,0	0,6	36,667	2,7
6,60	40,00	49,0	40,0	0,867	46,136	2,2
6,80	49,00	62,0	49,0	0,667	73,463	1,4
7,00	50,00	60,0	50,0	0,467	107,066	0,9
7,20	36,00	43,0	36,0	0,933	38,585	2,6
7,40	25,00	39,0	25,0	0,8	31,25	3,2
7,60	26,00	38,0	26,0	0,867	29,988	3,3
7,80	16,00	29,0	16,0	0,267	59,925	1,7
8,00	31,00	35,0	31,0	0,133	233,083	0,4
8,20	39,00	41,0	39,0	0,4	97,5	1,0
8,40	36,00	42,0	36,0	0,533	67,542	1,5
8,60	34,00	42,0	34,0	0,4	85,0	1,2
8,80	28,00	34,0	28,0	0,667	41,979	2,4
9,00	17,00	27,0	17,0	0,267	63,67	1,6
9,20	14,00	18,0	14,0	0,6	23,333	4,3
9,40	9,00	18,0	9,0	0,533	16,886	5,9
9,60	7,00	15,0	7,0	0,267	26,217	3,8
9,80	7,00	11,0	7,0	0,533	13,133	7,6
10,00	10,00	18,0	10,0	0,33	30,303	3,3
•	•	,	•	,	•	*

PROVA N° 3 Strumento utilizzato: PAGANI TG 63 (200 kN) Profondità prova: 10,00 mt PROVA N° 3 Prova eseguita in data: 04/08/2015 Località: Via Stangolini-Via Genova

Profondità (m)	Lettura punta (Kg/cm²)	Lettura laterale (Kg/cm²)	qc (Kg/cm²)	fs (Kg/cm²)	qc/fs Begemann	fs/qcx100 (Schmertmann)
` '	, 0	, 0	· · · ·		U	
0,20	10,00		10,0	0,733	13,643	7,3
0,40	11,00	22,0	11,0	0,733	15,007	6,7
0,60	13,00	24,0	13,0	1,2	10,833	9,2
0,80	11,00	29,0	11,0	1,6	6,875	14,5
1,00	14,00	38,0	14,0	1,333	10,503	9,5
1,20	11,00	31,0	11,0	0,8	13,75	7,3
1,40	9,00	21,0	9,0	0,267	33,708	3,0
1,60	8,00	12,0	8,0	0,2	40,0	2,5
1,80	10,00	13,0	10,0	0,533	18,762	5,3
2,00	10,00	18,0	10,0	0,333	30,03	3,3
2,20	7,00	12,0	7,0	0,333	21,021	4,8
2,40	7,00	12,0	7,0	0,267	26,217	3,8
2,60	9,00	13,0	9,0	0,4	22,5	4,4
2,80	10,00	16,0	10,0	0,533	18,762	5,3
3,00	13,00	21,0	13,0	0,533	24,39	4,1
3,20	18,00	26,0	18,0	0,667	26,987	3,7

3,40	18,00	28,0	18,0	0,8	22,5	4,4
3,60	14,00	26,0	14,0	0,533	26,266	3,8
3,80	12,00	20,0	12,0	0,667	17,991	5,6
4,00	7,00	17,0	7,0	0,467	14,989	6,7
4,20	8,00	15,0	8,0	0,333	24,024	4,2
4,40	10,00	15,0	10,0	0,4	25,0	4,0
4,60	10,00	16,0	10,0	0,4	25,0	4,0
4,80	29,00	35,0	29,0	0,8	36,25	2,8
5,00	33,00	45,0	33,0	0,4	82,5	1,2
5,20	42,00	48,0	42,0	0,4	105,0	1,0
5,40	45,00	51,0	45,0	1,4	32,143	3,1
5,60	36,00	57,0	36,0	0,867	41,522	2,4
5,80	42,00	55,0	42,0	0,933	45,016	2,2
6,00	44,00	58,0	44,0	0,667	65,967	1,5
6,20	35,00	45,0	35,0	1,4	25,0	4,0
6,40	25,00	46,0	25,0	1,2	20,833	4,8
6,60	40,00	58,0	40,0	0,6	66,667	1,5
6,80	23,00	32,0	23,0	1,667	13,797	7,2
7,00	40,00	65,0	40,0	0,333	120,12	0,8
7,20	60,00	65,0	60,0	0,867	69,204	1,4
7,40	40,00	53,0	40,0	0,2	200,0	0,5
7,60	77,00	80,0	77,0	0,333	231,231	0,4
7,80	54,00	59,0	54,0	0,333	162,162	0,6
8,00	33,00	38,0	33,0	0,333	99,099	1,0
8,20	17,00	22,0	17,0	0,467	36,403	2,7
8,40	25,00	32,0	25,0	0,733	34,106	2,9
8,60	23,00	34,0	23,0	0,333	69,069	1,4
8,80	23,00	28,0	23,0	0,933	24,652	4,1
9,00	12,00	26,0	12,0	0,467	25,696	3,9
9,20	9,00	16,0	9,0	0,467	19,272	5,2
9,40	9,00	16,0	9,0	0,533	16,886	5,9
9,60	7,00	15,0	7,0	0,333	21,021	4,8
9,80	5,00	10,0	5,0	0,467	10,707	9,3
10,00	7,00	14,0	7,0	0,467	14,989	6,7

PROVA N° 4

Strumento utilizzato: PAGANI TG 63 (200 kN)

Profondità prova: 10,00 mt

Prova eseguita in data: 04/08/2015

Località: Via Stangolini Via C Località: Via Stangolini-Via Genova

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm ²)	(Kg/cm ²)	(Kg/cm ²)	Begemann	(Schmertmann)
0,20 12,00		18,0	12,0	0,533	22,514	4,4
0,40	20,00	28,0	20,0	0,533	37,523	2,
0,60	22,00	30,0	22,0	1,0	22,0	4,
0,80	20,00	35,0	20,0	0,867	23,068	4,
1,00	15,00	28,0	15,0	0,8	18,75	5,3
1,20	13,00	25,0	13,0	1,0	13,0	7,
1,40	13,00	28,0	13,0	0,667	19,49	5,
1,60	10,00	20,0	10,0	0,667	14,993	6,
1,80	8,00	18,0	8,0	0,733	10,914	9,
2,00	11,00	22,0	11,0	0,8	13,75	7,
2,20	12,00	24,0	12,0	0,4	30,0	3,
2,40	12,00	18,0	12,0	0,667	17,991	5,
2,60	10,00	20,0	10,0	0,4	25,0	4,
2,80	11,00	17,0	11,0	0,467	23,555	4,
3,00	11,00	18,0	11,0	0,8	13,75	7,
3,20	21,00	33,0	21,0	0,867	24,221	4,
3,40	22,00	35,0	22,0	1,133	19,417	5,
3,60	21,00	38,0	21,0	0,6	35,0	2,
3,80	18,00	27,0	18,0	0,867	20,761	4,
4,00	15,00	28,0	15,0	0,6	25,0	4,
4,20	15,00	24,0	15,0	0,467	32,12	3,
4,40	11,00	18,0	11,0	0,533	20,638	4,
4,60	10,00	18,0	10,0	0,8	12,5	8,
4,80	12,00	24,0	12,0	0,6	20,0	5,
5,00	15,00	24,0	15,0	0,667	22,489	4,

5,20	11,00	21,0	11,0	0,667	16,492	6,1
5,40	12,00	22,0	12,0	0,933	12,862	7,8
5,60	12,00	26,0	12,0	0,6	20,0	5,0
5,80	11,00	20,0	11,0	0,667	16,492	6,1
6,00	12,00	22,0	12,0	0,6	20,0	5,0
6,20	24,00	33,0	24,0	0,867	27,682	3,6
6,40	21,00	34,0	21,0	0,8	26,25	3,8
6,60	34,00	46,0	34,0	0,467	72,805	1,4
6,80	31,00	38,0	31,0	0,333	93,093	1,1
7,00	35,00	40,0	35,0	1,0	35,0	2,9
7,20	30,00	45,0	30,0	0,733	40,928	2,4
7,40	25,00	36,0	25,0	0,867	28,835	3,5
7,60	25,00	38,0	25,0	0,933	26,795	3,7
7,80	20,00	34,0	20,0	0,4	50,0	2,0
8,00	30,00	36,0	30,0	0,533	56,285	1,8
8,20	32,00	40,0	32,0	0,8	40,0	2,5
8,40	34,00	46,0	34,0	0,6	56,667	1,8
8,60	31,00	40,0	31,0	0,867	35,755	2,8
8,80	25,00	38,0	25,0	0,6	41,667	2,4
9,00	15,00	24,0	15,0	0,533	28,143	3,6
9,20	10,00	18,0	10,0	0,467	21,413	4,7
9,40	11,00	18,0	11,0	0,6	18,333	5,5
9,60	9,00	18,0	9,0	0,533	16,886	5,9
9,80	7,00	15,0	7,0	0,533	13,133	7,6
10,00	8,00	16,0	8,0	0,4	20,0	5,0

STIMA PARAMETRI GEOTECNICI

TERRENI COESIVI

Coesione non drenata

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Cu
	(m)	(Kg/cm²)	(Kg/cm ²)	litostatica	litostatica		(Kg/cm ²)
				totale	efficace		
				(Kg/cm ²)	(Kg/cm ²)		
Strato 1	2,80	10,0	0,662	0,3	0,3	Terzaghi	0,44
Strato 3	4,60	9,4	0,453	0,7	0,5	Terzaghi	0,44
Strato 5	10,00	8,167	0,456	1,8	1,1	Terzaghi	0,35

Modulo Edometrico

Modulo Edome	etrico						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Eed (Kg/cm²)
Strato 1	2,80	10,0	0,662	0,3	0,3	Metodo generale del modulo Edometrico	43,5
Strato 3	4,60	9,4	0,453	0,7	0,5	Metodo generale del modulo Edometrico	42,2
Strato 5	10,00	8,167	0,456	1,8	1,1	Metodo generale del modulo Edometrico	

Modulo di deformazione non drenato Eu

	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Eu
	(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica	litostatica		(Kg/cm ²)
				totale	efficace		
				(Kg/cm ²)	(Kg/cm ²)		
Strato 1	2,80	10,0	0,662	0,3	0,3	Cancelli 1980	365,5
Strato 3	4,60	9,4	0,453	0,7	0,5	Cancelli 1980	332,4
Strato 5	10,00	8,167	0,456	1,8	1,1	Cancelli 1980	265,5

Modulo di deformazione a taglio

Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Modulo di

	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		deformazione a taglio (Kg/cm²)
Strato 1	2,80	10,0	0,662	0,3	0,3	Imai & Tomauchi	114,3
Strato 3	4,60	9,4	0,453	0,7	0,5	Imai & Tomauchi	110,1
Strato 5	10,00	8,167	0,456	1,8	1,1	Imai & Tomauchi	101,0
Grado di sovraco							_
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	Ocr
Strato 1	2,80	10,0	0,662	0,3	0,3	Piacentini	>9
Strato 3	4,60	9,4	0,453	0,7	0,5	Righi 1978 Piacentini	6,06
Strato 5	10,00	8,167	0,456	1,8	1,1	Righi 1978 Piacentini Righi 1978	2,95
Peso unità di vol						~	
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica totale (Kg/cm²)	Tensione litostatica efficace (Kg/cm²)	Correlazione	volume (t/m³)
Strato 1	2,80	10,0	0,662	0,3	0,3	Meyerhof	1,9
Strato 3 Strato 5	4,60 10,00	9,4 8,167	0,453 0,456	0,7 1,8	0,5 1,1	Meyerhof Meyerhof	1,8 1,8
Fattori di compre	essibilità C Crr	n					
	Prof. Strato	qc	fs	Tensione	Tensione	С	Crm
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		
Strato 1 Strato 3	2,80 4,60	10,0 9,4	0,662 0,453	0,3 0,7	0,3 0,5	0,2 0,20849	0,026 0,0271
Strato 5	10,00	8,167	0,456	1,8	1,1	0,22985	0,02988
Peso unità di vol	ume saturo						
	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale	litostatica efficace		volume saturo
Strato 1	2,80	10,0	0,662	(Kg/cm ²) 0,3	(Kg/cm ²) 0,3	Meyerhof	(t/m³) 1,9
Strato 3	4,60	9,4	0,453	0,7	0,5	Meyerhof	1,9
Strato 5	10,00	8,167	0,456	1,8	1,1	Meyerhof	1,9
TERRENI INC	OERENTI						
	Prof. Strato	qc	fs (Va/am²)	Tensione	Tensione	Correlazione	Densità relativa
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		(%)
Strato 2 Strato 4	3,60 8,80	15,75 37,429	0,633 0,724	0,6 1,3	0,5 0,8	Harman Harman	27,2 43,4
		51,127	S,72 F	1,5	0,0	i mi iiidli	13,4
Angolo di resiste	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Angolo
	(m)	(Kg/cm²)	(Kg/cm²)	litostatica totale (Kg/cm²)	litostatica efficace (Kg/cm²)		d'attrito (°)
Strato 2	3,60	15,75	0,633	0,6	0,5	Schmertmann	31,4
Strato 4	8,80	37,429	0,724	1,3	0,8	Schmertmann	33,7

M	Iodulo Edometri							
	F	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Modulo
		(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	litostatica efficace		Edometrico (Kg/cm²)
					(Kg/cm²)	(Kg/cm ²)		(Hg/cm/)
	Strato 2	3,60	15,75	0,633	0,6	0,5	Buisman -	78,8
	Strata 1	0 00	27.420	0.724	1.2	0,8	Sanglerat Buisman -	112.2
	Strato 4	8,80	37,429	0,724	1,3	0,8	Sanglerat	112,3
							Sungieru	
M	Iodulo di deforn							
	F	Prof. Strato	qc	fs (Way (a.m.2))	Tensione	Tensione	Correlazione	G (Karlana)
		(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica totale	litostatica efficace		(Kg/cm ²)
					(Kg/cm²)	(Kg/cm ²)		
	Strato 2	3,60	15,75	0,633	0,6	0,5	Imai &	150,9
	G	0.00	25.420	0.724	1.0	0.0	Tomauchi	25.1
	Strato 4	8,80	37,429	0,724	1,3	0,8	Imai & Tomauchi	256,1
							Tomaucin	
G	rado di sovraco							
	F	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Ocr
		(m)	(Kg/cm ²)	(Kg/cm ²)	litostatica	litostatica		
					totale (Kg/cm²)	efficace (Kg/cm²)		
	Strato 2	3,60	15,75	0,633	0,6		Larsson 1991	< 0.5
							S.G.I.	
	Strato 4	8,80	37,429	0,724	1,3	0,8	Larsson 1991	< 0.5
							S.G.I.	
M	Iodulo di reazion	ne Ko						
	F	Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Ko
		(m)	(Kg/cm²)	(Kg/cm ²)	litostatica	litostatica		
					totale (Kg/cm²)	efficace (Kg/cm²)		
	Strato 2	3,60	15,75	0,633	0,6	0,5	Kulhawy &	0,30
		-,	,	,,,,,	-,-	3,2	Mayne	7,2 5
	G	0.00	25.420	0.724	1.0	0.0	(1990)	0.25
	Strato 4	8,80	37,429	0,724	1,3	0,8	Kulhawy & Mayne	0,37
							(1990)	
							(1)))	
F	attori di compre						_	
	ŀ	Prof. Strato (m)	qc (Va/am²)	fs (Kg/cm²)	Tensione litostatica	Tensione litostatica	С	Crm
		(111)	(Kg/cm ²)	(Kg/CIII-)	totale	efficace		
					(Kg/cm²)	(Kg/cm ²)		
	Strato 2	3,60	15,75	0,633	0,6	0,5	0,15144	0,01969
	Strato 4	8,80	37,429	0,724	1,3	0,8	0,11393	0,01481
P	eso unità di volu	ıme						
		Prof. Strato	qc	fs	Tensione	Tensione	Correlazione	Peso unità di
		(m)	(Kg/cm²)	(Kg/cm²)	litostatica	litostatica		volume
					totale	efficace		(t/m^3)
	Strato 2	3,60	15,75	0,633	(Kg/cm ²) 0,6	(Kg/cm ²) 0,5	Meyerhof	1,8
	Strato 2	8,80	37,429	0,724	1,3	0,8	Meyerhof	1,8
			,	,	,	,	Ĵ	,
P	eso unità di volu			C	m ·	T	0 1 :	D 13 11
	ŀ	Prof. Strato	qc (Kg/cm²)	fs (Kg/cm²)	Tensione litostatica	Tensione litostatica	Correlazione	volume
		(m)	(Ng/CIII ²)	(Kg/CIII ²)	totale	efficace		saturo
					(Kg/cm ²)	(Kg/cm ²)		(t/m^3)
	Strato 2	3,60	15,75	0,633	0,6	0,5	Meyerhof	2,1
	Strato 4	8,80	37,429	0,724	1,3	0,8	Meyerhof	2,1